Abstract

This paper reports velocity measurements over mobile dunes using an acoustic Doppler velocimetry (ADV). Experiments were conducted with two different flow conditions resulting in the formation of two different size mobile dunes. Dunes height, wavelength and velocity of dunes found to be increasing with increase in average flow velocity for a constant flow depth. The quasi-stationary bed condition was assumed while measuring the velocity distribution along the depth. The effect of the non-equilibrium mobile dunes on the flow characteristics and turbulence is examined by computing turbulent intensities, turbulent kinetic energy and Reynolds shear stresses using time averaged and time–space averaged velocity measurements. The magnitudes of transverse velocities are approximately 1/10 of streamwise velocities and vertical velocities are approximately half of the transverse velocities. The considerable magnitudes of transverse velocities over mobile bedforms necessitate measurement of 3-D velocity components to analyze the flow field. Computed turbulence intensities are found to be maximum in the region consisting of the trough and the reattachment point of the dunes. It is observed that streamwise turbulence intensities near the bed are twice the transverse turbulence intensities, and transverse turbulence intensities are twice the vertical turbulence intensities. Reynolds stresses (transverse fluxes of streamwise and vertical momentum) are observed to be high on mobile bedforms which shows mobile dunes reinforce the secondary currents. Peak values of turbulent kinetic energy (TKE) and Reynolds stresses are also found in the region consisting of the trough and the reattachment point. It is visually observed in the present experiments that maximum erosion takes place at the reattachment point and eroded sediment is carried as total load and dropped on the lee slope of the subsequent downstream dune. This phenomenon is caused by flow expansion in the separation zone, and which is also the main reason for mobility of dunes and associated bedload transport. Most importantly, it is found that turbulence anisotropy increases with increase in size of mobile bedforms and anisotropy is extended up to the free surface in the flows over mobile bedforms, which proves the entire depth of flow is being disturbed by the mobile dunes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call