Abstract
<p>Parker Solar Probe provides a unique opportunity to study anisotropic turbulence in the inner heliosphere. We summarize our recent investigations of solar wind turbulence observed by Parker Solar Probe during its first seven orbits ranging from 0.1 to 0.6 AU. First, we analyzed turbulence anisotropy based on the 2D + slab model and determined the power ratio between the 2D and slab components. We find that the fraction of the 2D component increases with radial distance. Second, we developed a method to identify small-scale magnetic flux ropes and Alfvenic structures based on the reduced magnetic helicity. Alfvenic structures are prevalent in both slow and fast solar wind in PSP's measurements, while the small flux ropes are quasi-2D structures and are relatively abundant near the heliospheric current sheet and slow solar wind. Finally, we analyzed intervals with solar wind velocity strictly parallel to the mean magnetic field. We find a Kolmogorov-like power spectrum with a power-law index of -5/3. Wave activities in both MHD and kinetic scales are also analyzed in these field-aligned intervals. Fast magnetosonic waves and ion-scale waves are identified.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.