Abstract
The upper layer of the ocean participates directly in the exchange of momentum, heat and moisture with the atmosphere. We consider three examples of upper-ocean flow and heat transfer in the present contribution. These examples range from the canonical problem of a stratified shear layer to the surface boundary layer driven by wind and a diurnally varying heat flux to deep cycle turbulence in the Equatorial UnderCurrents (EUC). These problems illustrate stratified shear flow turbulence, wind-driven entrainment in a stratified, rotating fluid, and the communication of surface forcing to subsurface currents in the upper ocean. We discuss the three cases by including new simulations as well as some of our previous work. Direct numerical simulation (DNS) is our tool for the canonical shear layer and, for the other problems, our tool is large eddy simulation (LES) which is increasingly being used to examine turbulent transport and mixing in the ocean. We discuss how buoyancy and rotation affects the spatial structure and temporal evolution of turbulent fluxes, and thereby the distribution of surface inputs of momentum and heat in the upper ocean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.