Abstract
A tidal bore is a water discontinuity at the leading edge of a flood tide wave in estuaries with a large tidal range and funneling topography. New measurements were done in the Garonne River tidal bore on 14–15 November 2016, at a site previously investigated between 2010 and 2015. The data focused on long, continuous, high-frequency records of instantaneous velocity and suspended sediment concentration (SSC) estimate for several hours during the late ebb, tidal bore passage and flood tide. The bore passage drastically modified the flow field, with very intense turbulent and sediment mixing. This was evidenced with large and rapid fluctuations of both velocity and Reynolds stress, as well as large SSCs during the flood tide. Granulometry data indicated larger grain sizes of suspended sediment in water samples compared to sediment bed material, with a broader distribution, shortly after the tidal bore. The tidal bore induced a sudden suspended sediment flux reversal and a large increase in suspended sediment flux magnitude. The time-variations of turbulent velocity and suspended sediment properties indicated large fluctuations throughout the entire data set. The ratio of integral time scales of SSC to velocity in the x-direction was on average TE,SSC/TE,x ~ 0.16 during the late ebb tide, compared to TE,SSC/TE,x ~ 0.09 during the late flood tide. The results imply different time scales between turbulent velocities and suspended sediment concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.