Abstract
Rainfall is triggered and mainly dominated by atmospheric thermo-dynamics and rich water vapor.Nonetheless, turbulence is also considered as an important factor influencing the evolution of rainfall microphysical parameters. To study such an influence, the present study utilized boundary layer wind profiler radar measurements. The separation point of the radar power spectral density data was carefully selected to classify rainfall and turbulence signals; the turbulent dissipation rate <i>ε</i> and rainfall microphysical parameters can be retrieved to analyze the relationship betweenε and microphysical parameters. According to the retrievals of two rainfall periods in Beijing 2016, it was observed that(1) <i>ε</i> in the precipitation area ranged from 10<sup>-3.5</sup> to 10<sup>-1</sup> m<sup>2</sup> s<sup>-3</sup> and was positively correlated with the falling velocity spectrum width; (2) interactions between turbulence and raindrops showed that small raindrops got enlarge through collision and coalescence in weak turbulence, but large raindrops broke up into small drops under strong turbulence, and the separation value of <i>ε</i> being weak or strong varied with rainfall attributes; (3) the variation of rainfall microphysical parameters(characteristic diameters, number concentration, rainfall intensity, and water content) in the middle stage were stronger than those in the early and the later stages of rainfall event; (4) unlike the obvious impacts on raindrop size and number concentration, turbulence impacts on rain rate and LWC were not significant because turbulence did not cause too much water vapor and heat exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.