Abstract

<p>Accurate weather forecasts should support the increase in safety of aviation operations in Indonesia. This weather forecast is needed, especially in detecting turbulence, considering that geographically Indonesia has effective solar radiation resulting in convective cloud formation. Convective clouds can trigger turbulence then produce disruption and even accidents on flights. This research uses a case study on the Etihad Airways flight on Bangka Island on May 4, 2016. At the time of the incident, there was turbulence at 39,000 feet altitude, and the aircraft did not enter the cloudy area. The Weather Research and Forecasting (WRF) model is used to simulate the turbulence in this study, which is downscaled up to 3 km with a microphysics parameterization of WRF Single Moment 6 Class (WSM6). The results were then verified using correlation and linear regression for temperature, wind direction, wind speed, and pattern resemblance between cloud fraction and the convective nuclei distribution. The turbulence is analyzed from the south-north and west-east vertical airflow. The turbulence spotted at 06.40 UTC when there is a quite strong updraft which can cause turbulence. The turbulence parameters used, such as the eddy dissipation rate (EDR) parameter, which has a value of 0.05 , Richardson number with a value of less than 0.25, and turbulence index (TI 1) with a maximum value of 4 x 10<sup>-7</sup> s<sup>-2</sup> found that turbulence was in a strong category. The turbulence that occurs in this study is identified as near cloud turbulence (NCT) event due to cloud formation observed in the west of the turbulence and intense updraft activity at the location of turbulence.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call