Abstract
In a vertical representation of a market-basket database, each item is associated with a column of values representing the transactions in which it is present. The association-rule mining algorithms that have been recently proposed for this representation show performance improvements over their classical horizontal counterparts, but are either efficient only for certain database sizes, or assume particular characteristics of the database contents, or are applicable only to specific kinds of database schemas. We present here a new vertical mining algorithm called VIPER, which is general-purpose, making no special requirements of the underlying database. VIPER stores data in compressed bit-vectors called “snakes” and integrates a number of novel optimizations for efficient snake generation, intersection, counting and storage. We analyze the performance of VIPER for a range of synthetic database workloads. Our experimental results indicate significant performance gains, especially for large databases, over previously proposed vertical and horizontal mining algorithms. In fact, there are even workload regions where VIPER outperforms an optimal, but practically infeasible, horizontal mining algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.