Abstract

For decades, the de facto standard for forward error correction was a convolutional code decoded with the Viterbi algorithm, often concatenated with another code (e.g., a Reed-Solomon code). But since the introduction of turbo codes in 1993, much more powerful codes referred to collectively as turbo and turbo-like codes have eclipsed classical methods. These powerful error-correcting techniques achieve excellent error-rate performance that can closely approach Shannon's channel capacity limit. The lure of these large coding gains has resulted in their incorporation into a widening array of telecommunications standards and systems. This paper will briefly characterize turbo and turbo-like codes, examine their implications for physical layer system design, and discuss standards and systems where they are being used. The emphasis will be on telecommunications applications, particularly wireless, though others are mentioned. Some thoughts on the use of turbo and turbo-like codes in the future will also be given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.