Abstract
The turbine blade tip is considered as one of the most critical areas of gas turbine engines. The tip region often lacks durability and is challenging to cool. To achieve successful blade tip cooling designs, ALSTOM engineers are performing state of the art aero thermal analyses of blade tip cooling configurations. This paper describes the approach used for this analysis and draws conclusion for blade tip cooling optimization. Numerical simulations of flow and heat transfer are presented for a modern industrial gas turbine blade with a film cooled tip. The blade tip metal temperature distribution is analyzed for three different blade tip clearances with a detailed CFD analysis around the blade tip performed. The CFD analysis provides flow streamlines through the blade tip as well as a total blade tip leakage flow. Rough streamlines estimates are then used to define a set of control volumes for which dedicated cooling flow mixing is considered. The total mass flowing through all volumes corresponds to the CFD blade tip leakage. For each control volume corresponds a specific Reynolds number that is used to define a corresponding heat transfer coefficient. The latter is obtained from experimental Nusselt number correlations for the different regions of a blade squealer tip (crown, fillet and cavity). Application of the obtained heat transfer coefficient and mixing temperature boundary conditions on a 3D blade tip finite element model, together with an internal cooling flow network associated to the 3D model allows calculating the blade tip metal temperature. Results for two different tip clearances relative to nominal blade tip gap are presented and discussed. Comparison with experimental data such as thermal paint test and metallurgical data are given, showing good agreement with the blade tip cooling modeling introduced in this paper. Cooling performance of the blade tip is discussed based on the modeling approach proposed in this paper. The latter allows drawing conclusions for blade tip cooling optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.