Abstract

Temperature transfer is important to MDA (multidisciplinary analysis) of turbine blades, for the separation of aerodynamics and structure analysis codes. To re-couple these codes, a load surface method is provided here to transfer temperature across the interface of arbitrarily meshed CFD (Computational Fluid Dynamics) and CSM (Computational Structural Mechanics) models. The idea of the method is to transfer temperature by a Bi-cubic B -spline surface, fitted from the CFD temperature results of interfaces in parametric space. The temperature of the CSM nodes of the interface is calculated from the load surface in the same parametric space. An important step in this transfer method is to map the CFD and CSM nodes into the same parametric space. The mapping surface method is detailed for this purpose. In the mapping method, the nodes are mapped onto a structured quad mesh, called a mapping surface, which is additionally generated on the interface surface. Then, the nodes are mapped into the parametric space, which is defined by a parameterization of the mapping surface. To evaluate the accuracy of the method, the temperature of a turbine blade is transferred experimentally. The result indicates that the method is accurate even for coarse meshes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.