Abstract

For the BIOFILTER flight experiment a set of turbidity sensors was developed for the measurement of the growth rate of the bacteria Xanthobacter autrophicus GJ10 in a fluid medium. During the flight experiment on FOTON M2 in 2005, bacterial growth was measured revealing growth rates between 0.046–0.077 h − 1 in microgravity, i.e. approximately 1.5–2.5 times slower than routinely measured under optimal laboratory conditions on earth. To increase confidence in the equipment and for comparison of the results, a ground-reference experiment was carried out in 2006, using BIOFILTER hardware mounted on a random positioning machine (RPM). The RPM performed random rotations at 0.5°/min (for settling compensation) and 90°/min (for simulated microgravity) while the environment was controlled, accurately repeating the BIOFILTER flight temperature conditions. Despite the rotations of the RPM, a normal growth rate of 0.115 h − 1 was confirmed in both cases. The operation of the turbidity sensor was verified. Biological interpretation of the measurements is however compromised due to poor mixing and other unknown physical and biological phenomena that need to be addressed for further space experiments using these kinds of systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.