Abstract
Turbidity current hydrodynamic properties are evaluated experimentally to understand the formation of turbidity current depositional lobes and the relationship with flow properties, in particular, flow rates. This study focused on the depositional behavior of unconfined turbidity currents through the analysis of three-dimensional experiments performed in a large-scale channel-basin tank without slope break. Three flow rates were simulated when flow velocities, both in longitudinal and transversal directions, were measured and resulting depositional features were evaluated. The three-dimensional physical experiments carried out in this work allowed the identification of two flow rate models with different hydrodynamic characteristics and two distinct lobes. Lower flow rates produced elongated lobate deposits, with characteristic lower flow regime plane bed on the surfaces, characteristic downstream sediment fining that resulted from lower flow velocities, and visibly less turbulent flows from less competent and waning turbidity currents. Higher flow rates showed a more characteristic radial and downstream fining sediment with lobe surfaces displaying ripples and dunes, generated by the higher flow velocities, presumably more turbulent, and more competent turbidity currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.