Abstract

A controversy surrounding the “tunnelling time problem” stems from the seeming inability of quantum mechanics to provide, in the usual way, a definition of the duration a particle is supposed to spend in a given region of space. For this reason, the problem is often approached from an “operational” angle. Typically, one tries to mimic, in a quantum case, an experiment which yields the desired result for a classical particle. One such approach is based on the use of a Larmor clock. We show that the difficulty with applying a non-perturbing Larmor clock in order to “time” a classically forbidden transition arises from the quantum Uncertainty Principle. We also demonstrate that for this reason a Larmor time (in fact, any Larmor time) cannot be interpreted as a physical time interval. We provide a theoretical description of the quantities measured by the clock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.