Abstract
Abstract In this Letter, we extend the Parikh–Wilczek tunnelling framework to calculate the emission rate of a particle with electric and magnetic charges. We first reconstruct the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges. Then, in the background of Kerr–Newman–Kasuya black hole spacetime, we calculate the emission spectrum of the outgoing particles with electric and magnetic charges. For the sake of simplicity, we only consider the case that the rate of electric and magnetic charge of the emission particle is constant and equals that of the black hole. In this case, the emission spectrum deviates from the pure thermal spectrum, but it is consistent with an underlying unitary theory and takes the same functional form as that of uncharged massless particles. Finally, discussions about the result are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.