Abstract
The tunneling wave function of the universe is investigated in a minisuperspace framework of a de Sitter universe with a quantum scalar field, treated as a perturbation. We consider three different approaches to defining the tunneling wave function: (1) tunneling boundary conditions in superspace, (2) Lorentzian path integral, and (3) quantum tunneling from initial universe of a vanishing size. We show that the superspace approach requires Robin boundary conditions for the scalar field modes, the path integral approach requires adding an appropriate boundary term to the scalar field action, and the initial universe approach requires the initial quantum state of the scalar field to be Euclidean vacuum. We find that all three approaches yield identical wave functions and that scalar field fluctuations are well behaved, contrary to earlier claims in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.