Abstract

Multiheme cytochromes (MHCs) have attracted much interest for use in nanobioelectronic junctions due to their high electronic conductances. Recent measurements on dry MHC junctions suggested that a coherent tunneling mechanism is operative over surprisingly long long distances (>3 nm), which challenges our understanding of coherent transport phenomena. Here we show that this is due to (i) a low exponential distance decay constant for coherent conduction in MHCs (β = 0.2 Å-1) and (ii) a large density of protein electronic states which prolongs the coherent tunneling regime to distances that exceed those in molecular wires made of small molecules. Incoherent hopping conduction is uncompetitive due to the large energy level offset at the protein-electrode interface. Removing this offset, e.g., by gating, we predict that the transport mechanism crosses over from coherent tunneling to incoherent hopping at a protein size of ∼7 nm, thus enabling transport on the micrometer scale with a shallow polynomial (∼1/r) distance decay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.