Abstract

In electron-transfer reactions in proteins and other molecular systems involving long-distance electron tunneling, the tunneling time, i.e., the time that an electron spends in the barrier region between redox centers, can be comparable to vibrational periods of the nuclei. One consequence of this is the breakdown of the Born-Oppenheimer (BO) approximation at the far tails of the tunneling electronic wave functions. These tails define the coupling of redox centers exchanging electrons and hence the rates of electron transfer. We discuss the transition in the distance dependence of the rate of electron transfer that separates the BO and non-BO behavior of the tunneling reaction and show how the crossover is related to tunneling time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.