Abstract

We investigate the spin-dependent tunneling transport in a heterostructure with two single molecular magnets (SMMs). The tunneling magnetoresistance (TMR) and negative differential conductance due to the strong resonant tunneling in the junction are demonstrated by the master equation approach. At low bias voltage, the device presents low/high resistant states with the initial states of the single molecular magnets parallel/antiparallel. Strong Coulomb repulsive interaction suppresses the current greatly in antiparallel situation. At high voltage, the middle system containing two SMMs tends to be non-polarized, and acts like ordinary quantum dots. ► Low/high resistant states with initial states parallel/antiparallel. ► Coulomb repulse suppresses the current in antiparallel situation. ► At high voltage, two SMMs tend to be non-polarized. ► Negative differential resistance in parallel situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.