Abstract

Atomically precise epitaxial structures are unique systems for tunneling spectroscopy that minimize extrinsic effects of disorder. We present a systematic tunneling spectroscopy study, over a broad doping, temperature, and bias range, in epitaxial c-axis La$_{2-x}$Sr$_{x}$CuO$_{4}$/La$_{2}$CuO$_{4}$/La$_{2-x}$Sr$_{x}$CuO$_{4}$ heterostructures. The behavior of these superconductor/insulator/superconductor (SIS) devices is unusual. Down to 20 mK there is complete suppression of c-axis Josephson critical current with a barrier of only 2 nm of La$_{2}$CuO$_{4}$, and the zero-bias conductance remains at 20-30% of the normal-state conductance, implying a substantial population of in-gap states. Tunneling spectra show greatly suppressed coherence peaks. As the temperature is raised, the superconducting gap fills in rather than closing at $T_{c}$. For all doping levels, the spectra show an inelastic tunneling feature at $\sim$ 80 meV, suppressed as $T$ exceeds $T_{c}$. These nominally simple epitaxial cuprate junctions deviate markedly from expectations based on the standard Bardeen-Cooper-Schrieffer (BCS) theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call