Abstract
Using a mixture of different types of fillers has been experimentally shown to improve the electrical conductivity of polymer nanocomposites beyond the weighted average due to synergistic effects. In this study, we develop a critical path analysis-based tunneling-percolation model for multicomponent systems of nanocomposites with ellipsoidal fillers. The nature of the interaction between different filler components is controlled by a key modeling parameter capturing the tunneling interactions between fillers. This generalization allows us to examine scenarios where the nature of a given type of filler can be varied continuously from an insulating-type to a conductive-type. The percolation behavior of two-component systems with a combination of prolate, oblate, and spherical fillers is investigated using Monte Carlo simulations for different relative volume fractions and nature of interactions while keeping the total volume fraction fixed. The simulation results are shown to be in semi-quantitative agreement with predictions made by the second-virial-approximation-based theories. Our results suggest that for multicomponent systems with well-dispersed fillers, the synergistic effects are linked directly with the nature of interactions between different filler types. Moreover, addition of prolate fillers to oblate or spherical fillers should generally improve the electrical conductivity of multicomponent nanocomposites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.