Abstract

We study the tunneling modes in a frustrated total internal reflection (FTIR) structure with hyperbolic metamaterial (HMM). The physical mechanism of tunneling mode is analyzed by the condition of general zero average permittivity. The influence of anisotropy, loss and dispersion of HMM on tunneling modes is discussed based on simulation results. Tunneling mode merging or splitting can be realized by adjusting the thickness of air or HMM. We can also find the absorption of HMM significantly reduces the transmittance peak of tunneling mode. When a recently reported HMM of ZnAlO/ZnO multilayer is introduced in the FTIR structure, the combined action of HMM loss and dispersion brings many small tunneling modes in the angular spectrum. The tunneling mode in the proposed structure can be used to design filters and wavelength selectors which may also have applications in wavelength de-multiplexing in optical communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.