Abstract

In this paper, a systematic derivation of the tunneling matrix elements in three-dimensional space is presented. Based on a modified Bardeen tunneling theory, explicit expressions for the tunneling matrix elements for localized tip states are derived with use of the Green's-function method. It is shown that by expanding the vacuum tail of the tip wave function in terms of spherical harmonics, the tunneling matrix elements are related to the derivatives of the sample wave functions at the nucleus of the apex atom (taken as the center of the spherical-harmonics expansion), in a simple and straightforward way. In addition, an independent derivation based on a general sum rule is also presented, which is valid in a number of curvilinear coordinate systems. In spherical coordinates, a general form of the derivative rule follows. In parabolic coordinates, similar results are obtained. Physical meanings of these matrix elements, as well as their implications to the imaging mechanism of scanning-tunneling microscopy, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.