Abstract

We propose and theoretically investigate an interesting and potentially very attractive magnetic tunnel junction FePt/NaCl/FePt(001) for spintronics. It is attractive because the strain at the FePt/NaCl interface is relatively small and, as a result, spin injection from the FePt metal to the NaCl barrier is significant and thus a potentially large TMR ratio can be obtained. The electronic bands with the symmetry of L10 FePt cross the Fermi level for both the majority-spin and minority-spin channels, and the evanescent state with the symmetry dominates the electron transmission through the fcc NaCl barrier. Very respectable values of the tunnel magnetoresistance ratio are predicted. The microscopic physics of quantum transport in this system is systematically analyzed and understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.