Abstract

In this paper, a theoretical model for electron transport through symmetric system consisting of two baths interferometer with one single-level quantum dot in each of its arms was considered. In this model, the dots are attached to ferromagnetic leads with parallel and antiparallel magnetic configurations. Green's function technique in this model was used. Our focus is on the Transport characteristics of conductance (G) and tunnel magnetoresistance (TMR). A special attention to the influence of an applied magnetics flux on the characteristics of conductance and tunneling magnetoresistance was paid. Concerning the study of the conductance, it was found that the effect of bonding (antibonding) states is most obvious in quantum dots at various values of the magnetic field. The change in spin-polarization value was seen to affect the increase and decrease in the conductance value. We noticed a difference in calculation of TMR in the bonding and the antibonding states, where the results show Strong dissonance in bonding state and strong attraction in antibonding state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call