Abstract

It is widely known that the addition of nitrogen in silicon oxide, or the addition of oxygen in silicon nitride, affects its reliability as a gate dielectric. The authors examine the gate leakage current as a function of the oxygen and nitrogen contents in ultrathin silicon oxynitride films on Si substrates. It is shown that, provided that electron tunneling is the dominant current conduction mechanism, the gate leakage current in the direct tunneling regime increases monotonically with the oxygen content for a given equivalent oxide thickness (EOT), such that pure silicon nitride passes the least amount of current while pure silicon oxide is the leakiest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.