Abstract
With available high resolution structures of PSII and a collection of reported redox midpoint potentials for most of the cofactors, it is possible to compare the expected electron tunneling rates with experimental rates to determine which electron transfer reactions are likely to reflect simply engineered electron tunneling, and which are more sophisticated and associated with large product rearrangements or the making and breaking of bonds. Reliable reorganization energies are largely lacking in this photosystem compared to PSI and purple bacteria and contribute about an order of magnitude uncertainty in tunneling rate estimates. Nevertheless it seems clear that as in purple bacterial reaction centers and PSI, with the notable exception of the oxygen evolving center, the majority of electron transfers within PSII are electron-tunneling limited at room temperature. Tunneling simulations also suggest that the short circuit between pheophytin and the adjacent chlorophyll cation may be fast enough to challenge triplet decay as the principle means of charge recombination from Q(A)(-) at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.