Abstract

We show that the scaling exponent for tunneling into a quantum wire in the "Coulomb Tonks gas" regime of impenetrable, but otherwise free, electrons is affected by impurity scattering in the wire. The exponent for tunneling into such a wire thus depends on the conductance through the wire. This striking effect originates from a many-body scattering resonance reminiscent of the Kondo effect. The predicted anomalous scaling is stable against weak perturbations of the ideal Tonks gas limit at sufficiently high energies, similar to the phenomenology of a quantum critical point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.