Abstract

We study the tunneling dynamics and energy bands of three Bose-Einstein condensates which are coupled weakly with each other. The study is carried out with both the mean-filed model and the second-quantized model. The results from these two models are compared and found to agree with each other when the particle number is large. Without interaction, this system possesses a Dirac point in its energy band. This Dirac point is immediately destroyed and develops into a loop structure with arbitrary small interaction. This loop structure has a strong effect on the tunneling dynamics. We find that the tunneling dynamics in this system is very sensitive to the system parameter, e.g., the interaction strength. This sensitivity is found to be caused by the chaos in the mean-field model and the avoided energy crossings with tiny gaps in the second-quantized model. This result gives a certain indication on how the classical dynamics and quantum dynamics are connected in the semi-classical limit. Our mean-field results are also valid for three mutually coupled optical nonlinear waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.