Abstract

The tunneling conductance for a junction device consisting of a normal metal and a singlet superconductor is studied with Rashba spin orbit coupling (RSOC) being present in the metallic lead and the interface separating the two regions via an extended Blonder-Tinkham-Klapwijk (BTK) formalism. Interesting interplay between the RSOC and a number of parameters that have experimental significance, and characterize either the junction or the superconducting leads, such as the barrier transparency, quasiparticle lifetime, Fermi wavevector mismatch, an in-plane magnetic field and their effects on the tunneling conductance are investigated in details for both a s-wave and a d-wave superconductor. In an opaque barrier, in presence of a quasiparticle lifetime, a Fermi wavevector mismatch or an external in-plane magnetic field, RSOC enhances the conductance corresponding to low biasing energies, that is, at energies lesser than the superconducting gap, while the reverse is noted for energies exceeding the magnitude of the gap. Further, there are exciting anomalies noted in the conductance spectrum for the d-wave gap which can be understood by incorporating the interplay between the superconducting gap and the angle of incident of the charge carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.