Abstract
Vertically aligned arrays are a frequent outcome in the nanowires synthesis by self-assembly techniques or in its subsequent processing. When these nanowires are close enough, quantum electron tunneling is expected between them. Then, because extended or localized electronic states can be established in the wires by tuning its electron density, the tunneling configuration between adjacent wires could be conveniently adjusted by an external gate. In this contribution, by considering the collective nature of electrons using a Yukawa-like effective potential, we explore the electron interaction between closely spaced, parallel nanowires while varying the electron density and geometrical parameters. We find that, at a low-density Wigner crystal regime, the tunneling can take place between adjacent localized states along and transversal to the wires axis, which in turn allows to create two- and three-dimensional electronic distributions with valuable potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.