Abstract

We study the quantum point contact between the topological superconductor and the helical Luttinger liquid. The effects of the electron-electron interactions in the helical Luttinger liquid on the low-energy physics of this system are analyzed by the renormalization group. Among the various couplings at the point contact which arise from the tunneling via the Majorana edge channel, the induced backscattering in the helical Luttinger liquid is the most relevant for repulsive interactions. Hence, at low temperatures, the helical Luttinger liquid is effectively cut into two separated half wires. As a result, the low-temperature physics is described by a fixed point consisting of two leads coupled to the topological superconductor, and the electrical transport properties through the point contact at low temperature and low bias are dominated by the tunneling via the Majorana edge channel. We compute the temperature dependence of the zero-bias tunneling conductance and study the full counting statistics for the tunneling current at zero temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.