Abstract
Magnetic tunnel junctions (MTJs) consisting of CoFe and NiFe as ferromagnetic electrodes and MgO as insulating barrier fabricated through in situ shadow masking employing ion beam sputtering are studied for their tunneling magnetoresistance (TMR) and temperature dependence of the tunneling conductance behavior. The tunneling characteristics of these MTJs exhibited barrier height of 0.7eV and width of 3.3nm. These MTJs possessed ∼12% TMR at 60K. The temperature dependence of conductance behavior of these junctions have revealed finite contributions from inelastic tunneling through the barrier via hopping conduction via present localized states which arise due to the presence of ionic interstitial defects in the MgO oxide barrier. The fitting of the data reveals that thirteenth order of hopping conduction is operative through MgO barrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.