Abstract
This paper investigates the forward conduction mechanism of W-based Schottky diodes on AlGaN/GaN heterostructures across a temperature range of 25–150 °C. Current-Voltage measurements carried out at different temperatures (I-V-T), allow to identify two coexisting mechanisms for charge transport. At lower bias the conduction mechanism is ruled by tunneling (TU), with a characteristic energy of E00 = 75 meV extracted from the temperature dependence of the ideality factor. At higher bias the Thermionic Emission (TE) mechanism dominates, thus revealing the presence of an inhomogeneous barrier that increases from 0.77 to 0.94 eV with increasing the measurement temperature. An ideal barrier of 1.22 eV was extrapolated for a unitary ideality factor. Structural and electrical analyses performed at nanoscale level revealed the presence of a density of defects (dislocations) in the order of 4 × 109 cm−2. Conductive Atomic Force Microscopy (C-AFM) provided local electrical information, uncovering a significant correlation between the observed electrical characteristics and the nanoscale defect distribution. This detailed insight highlights the crucial role of the electrical characteristics of defects in influencing the tunneling current component at low bias, thereby providing valuable context for understanding the electrical behavior and performance of microscopic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.