Abstract
Recently, n-type Si solar cells featuring a passivated rear contact, called TOPCon (Tunnel Oxide Passivated Contact) were reported. The high conversion efficiency of 24.4% and very high FF>82% demonstrates that the efficiency potential of this full-area passivated rear contact is as good as or even better than that of partial rear contact (PRC) schemes like PERL (passivated emitter and rear locally diffused) and in addition avoids complex structuring steps and features a 1D carrier transport. Likewise, a boron-doped passivated rear contact for p-type solar cells (p-TOPCon) is proposed as an alternative to p-PRC cells. The optimum device design of PRC cells has to account for two opposing effects: a low-loss 3D carrier transport requires a high base doping but Shockley–Read–Hall (SRH) recombination within the base due to the formation of boron–oxygen complexes in standard Cz silicon calls for a low base doping level. This conflict might be overcome by p-TOPCon because its performance is less sensitive to base doping. This will be discussed on the base of experimental results. It is shown that its high implied fill factor (iFF) of 84% combined with the 1D carrier transport in the base translates into a higher FF potential. First investigations on planar solar cells prove the good performance of the p-TOPCon with respect to passivation and carrier transport. A Voc of 694mV and a FF of 81% underline the efficiency potential of this rear contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.