Abstract

The two-dimensional atomically thin insulator hexagonal boron nitride (h-BN) constitutes a new paradigm in tunnel based devices. A large band gap, along with its atomically flat nature without dangling bonds or interface trap states, makes it an ideal candidate for tunnel spin transport in spintronic devices. Here, we demonstrate the tunneling of spin-polarized electrons through large area monolayer h-BN prepared by chemical vapor deposition in magnetic tunnel junctions. In ferromagnet/h-BN/ferromagnet heterostructures fabricated on a chip scale, we show tunnel magnetoresistance at room temperature. Measurements at different bias voltages and on multiple devices with different ferromagnetic electrodes establish the spin polarized tunneling using h-BN barriers. These results open the way for integration of 2D monolayer insulating barriers in active spintronic devices and circuits operating at ambient temperature, and for further exploration of their properties and prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call