Abstract

In this work, the performance of Tunnel Field-Effect Transistors (TFETs) based on two-dimensional Transition Metal Dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2D material based TFETs can have tight gate control and high electric fields at the tunnel junction, and can in principle generate high ON-currents along with a sub-threshold swing smaller than 60 mV/dec. Our simulations reveal that high performance TMD TFETs, not only require good gate control, but also rely on the choice of the right channel material with optimum band gap, effective mass and source/drain doping level. Unlike previous works, a full band atomistic tight binding method is used self-consistently with 3D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the subthreshold swing and energy-delay of these TFETs are compared with conventional CMOS devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.