Abstract

Tunnel field-effect transistors are promising successors of metal-oxide-semiconductor field-effect transistors because of the absence of short-channel effects and of a subthreshold-slope limit. However, the tunnel devices are ambipolar and, depending on device material properties, they may have low on-currents resulting in low switching speed. The authors have generalized the tunnel field-effect transistor configuration by allowing a shorter gate structure. The proposed device is especially attractive for vertical nanowire-based transistors. As illustrated with device simulations, the authors’ more flexible configuration allows of the reduction of ambipolar behavior, the increase of switching speed, and the decrease of processing complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call