Abstract

Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates.

Highlights

  • HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not

  • Solid-state ferroelectric tunnel junctions (FTJs) based on ultrathin poly(vinylidene fluoride) (PVDF)-based films have not yet been reported and the fundamental physics of tunnel electroresistance (TER) in organic FTJs remains to be explored

  • We unambiguously show that the ferroelectric switchability is sustained down to 1 layer, and reveal that charge transport across both mono- and bi-layers PVDF-based FTJs proceeds by a direct quantum-mechanical tunnelling transport

Read more

Summary

Introduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. In emerging ferroelectric tunnel junctions (FTJs), switching the polarisation of an ultrathin ferroelectric barrier sandwiched between two electrodes modulates the junction resistance, giving rise to giant tunnel electroresistance (TER)[1,2].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.