Abstract

Temperature dependence of the upper critical magnetic field (Hc2) of single crystalline FeTe0.5Se0.5(Tc = 14.5 K) have been determined by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures down to 1.6 K. The Werthamer–Helfand–Hohenberg model accounts for the data for magnetic field applied both parallel (H ‖ ab) and perpendicular (H ‖ c) to the iron conducting plane, in line with a single band superconductivity. Whereas Pauli pair breaking is negligible for H ‖ c, Pauli contribution is evidenced for H ‖ ab with Maki parameter α = 1.4, corresponding to Pauli field HP = 79 T. As a result, the Hc2 anisotropy which is already rather small at Tc (γ = 1.6) further decreases as the temperature decreases and becomes smaller than 1 at liquid helium temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.