Abstract

Based on the excessive deformations and support failure encountered during tunnel construction at the Driskos Twin Tunnel site in Northern Greece, this paper provides insight on how tunnels designed in such weak rock environments can be realistically analyzed with a view of determining better analytical tools to predict deformations and improving current design methods. Specific factors that were assessed include rock strength based on the geological strength index (GSI), tunnel deformation, numerical analysis techniques employed, three-dimensional model type, support considerations, dilation, sequencing of tunnel excavation, influence of single bore construction on twin bore, and homogenization of tunnel faces. This work involves the use of nominally identical two- and three-dimensional numerical models of tunnel sequencing for analytical simulation of weak material behaviour and sequential tunnel deformation response with the goal of investigating the strength and deformation of such weak rock masses. These have been used in combination with monitoring data that were obtained in the field during the Driskos Twin Tunnel construction. A discussion of the geological conditions, material property determination, monitoring data, and model calibration strategy is given. This paper provides insight into these issues and poses many more fundamental questions regarding the analysis of tunnel excavation within weak rock masses requiring further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call