Abstract
First-principles theory-based comparative electronic-transport studies were performed for an atomic chain of Au, a bare Cd9Te9 cage-like cluster, and a single transition metal (TM) (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd) atom encapsulated within the Cd9Te9 using Au(111) as the electrodes. The bare cluster was semiconducting and acted as a tunnel barrier up to a particular applied bias and then beyond that the device displayed a linear current-voltage relationship. Several TMs (Ti, V, Cr, Mn, Fe) encapsulated in the cage showed a half-metallic behavior and spin-filtering effect in the I-V characteristics of the device. Detailed qualitative and quantitative analyses of the I-V characteristics for metallic, semiconducting, and half-metallic nanostructures were carried out for quantifying the use of these TMs in spintronic device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.