Abstract

The essential oils (EOs) extracted from the aerial parts of cultivated Salvia officinalis L. and the berries of Schinus molle L. were analysed by gas chromatography–mass spectrometry (GC–MS) and 68 and 67 constituents were identified, respectively. The major constituents were 1,8-cineole (33.27%), β-thujone (18.40%), α-thujone (13.45%), borneol (7.39%) in S. officinalis oil and α-phellandrene (35.86%), β-phellandrene (29.3%), β-pinene (15.68%), p-cymene (5.43%) and α-pinene (5.22%) in S. molle oil. In its second part, the present study was conducted to evaluate the in vitro antimicrobial activity of both studied EOs. For this purpose, paper disc-diffusion method and broth microdilution test were used. The disc-diffusion method showed significant zone of lysis against all the pathogens studied (gram-negative and gram-positive bacteria, yeast). These activities remained stable after six months, and decreased approximately by 20% after one year of storage of the EOs at 4 to 7 °C. On comparing the efficiency of both EOs, S. officinalis EO exhibited higher antibacterial activity against the majority of strains and especially against Candida albicans (two fold more active according to the inhibition zones values). The minimal inhibitory concentrations (MICs) were reported between 4.5 mg/ml and 72 mg/ml on nutrient broth. The particular chemotype of each EO may be involved in its specific antimicrobial behaviour. Furthermore, the inhibitory effect of these EOs were evaluated against two foodborne pathogens belonging to Salmonella genus, experimentally inoculated (10 3 CFU/g) in minced beef meat, which was mixed with different concentrations of the EO and stored at 4 to 7 °C for 15 days. Although the antibacterial activities of both EOs in minced beef meat were clearly evident, their addition had notable effects on the flavour and taste of the meat at concentrations more than 2% for S. molle and 1.5% for S. officinalis. One solution to the above-mentioned problem may be the use of combinations of different food preservation systems. In this context, each of the EOs has been used along with low water activity (addition of NaCl) in addition to low refrigeration temperatures. Results on the Salmonella growth showed that some combinations could be recommended to eliminate germs from minced raw beef. By using this method, a stable and, from a microbiological point of view, safe meat can be produced without substantial loss in sensory quality. Results obtained herein, may suggest that the EOs of S. officinalis and S. molle possess antimicrobial activity, and therefore, they can be used in biotechnological fields as natural preservative ingredients in food and/or pharmaceutical industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.