Abstract

The transport properties of water through a nanochannel influenced by the direction of an external electric field has been investigated by using molecular dynamics simulations. Water molecules flow unidirectionally across the nanochannel under a uniform external electric field without an osmotic pressure. It is found that the direction of the external field plays an important role in the interactions and dipole orientations of water molecules in the nanochannel, accordingly changing the net water flux dramatically. Most importantly, a critical angle (θC) between the external field and the nanochannel axis is found. The average net water flux increases as θ increases for θ≤θC but decreases sharply to a near-zero value for a further increase of θ. The maximum value of the average net water flux is 7.33 times as high as the value when the electric field is along the nanochannel axis. Our findings are of great practical importance for nanomolecular engineering, which provide a possible strategy for designing novel controllable water nanopumps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.