Abstract

Rare-earth-doped up-conversion (UC) fluoride materials have been widely used in phosphors, color displays, optical storages, solid-state lasers, solar cells and biomedical imaging, due to the fact that their low phonon energy can effectively suppress the nonradiative multiphonon relaxation process. In this work, the NaLuF4:Yb3+/Ho3+ nanocrystals are successfully synthesized by a facile solvothermal method. The crystal structure and morphology of the NaLuF4 nanocrystals are characterized by the X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) respectively. The diffraction peaks are well consistent with those of high-purity hexagonal NaLuF4 (JCPDS No. 77-2042, P63/m space group). The TEM image reveals that the product is composed of monodisperse hexagonal rods with an average length of about 170 nm and an average diameter of 30 nm. The crystal structure and morphology do not present obvious change with the increasing Ce3+ ion concentration, which is due to the similarity in ion radius between Ce3+ and Lu3+. Under 980 nm excitation, the UC emissions of -NaLuF4:Yb3+/Ho3+ nanocrystals with different Ce3+ codoping concentrations are carefully studied. The strong green and red UC emissions of Ho3+ ions are observed in -NaLuF4 nanocrystals. It can be found that the UC emission of Ho3+ ions is tuned from green to red in -NaLuF4 nanocrystals through increasing Ce3+ ion concentrations from 0 to 12%, and the red-to-green (R/G) ratio is enhanced from 0.34 to 8.44. According to the level structure of Ho3+ ions, the red UC emission originates from the excited state 5F5. However, the population of the 5F5 excited state mainly depends on the two nonradiative relaxation processes of 5S2/5F45F5 and 5I65I7 transitions. In fact, the two nonradiative relaxation processes are very difficult to occur according to multiphonon nonradiative relaxation rate. When Ce3+ ion is introduced into the system, the red UC emission intensity and R/G ratio of Ho3+ are increased, because the energy gap from the excited state 5F7/2 to the ground state 2F5/2 is about 3000 cm-1 for Ce3+ ions, which is similar to the gaps of 5S2/5F45F5 and 5I65I7 transitions of Ho3+ ions. According to the energy conservation law, the two inefficient nonradiative processes from the 5S2/5F4 and 5I6 states of Ho3+ ions are substituted in order by resonant cross relaxation (CR) processes 5S2 (5F4) (Ho3+) + 2F5/2 (Ce3+5F5 (Ho3+) + 2F7/2 (Ce3+) and 5I6 (Ho3+) + 2F5/2 (Ce3+)5I7 (Ho3+) +2F7/2 (Ce3+) between Ho3+ and Ce3+ ions. These two resonant CR processes can transfer populations from the 5S2/5F4 state and 5I6 state to the 5F5 state and its intermediate 5I7 state, respectively. The resonant modality and the strong interaction between Ho3+ and Ce3+ ions are employed to enhance the red emission and suppress the green emission. The occurrence of CR process between Ho3+ and Ce3+ ions is further proved by the down-conversion emission spectra of Ho3+ ions under 532 and 980 nm laser excitation, respectively. We demonstrate that the highly efficient red UC emission of -NaLuF4:Yb3+/Ho3+/Ce3+ nanocrystals offers opportunities as desired optical materials for color displays, anticounterfeiting techniques and multiplexed labeling applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call