Abstract
A new theoretical method is presented for future multi-scale aerodynamic optimization of very large wind farms. The new method combines a recent two-scale coupled momentum analysis of ideal wind turbine arrays with the classical blade-element-momentum (BEM) theory for turbine rotor design, making it possible to explore some potentially important relationships between the design of rotors and their performance in a very large wind farm. The details of the original two-scale momentum model are described first, followed by the new coupling procedure with the classical BEM theory and some example solutions. The example solutions, obtained using a simplified but still realistic NREL S809 aerofoil performance curve, illustrate how the aerodynamically optimal rotor design may change depending on the farm density. It is also shown that the peak power of the rotors designed optimally for a given farm (i.e. ‘tuned' rotors) could be noticeably higher than that of the rotors designed for a different farm (i.e. ‘untuned' rotors) even if the blade pitch angle is allowed to be adjusted optimally during the operation. The results presented are for ideal very large wind farms and a possible future extension of the present work for real large wind farms is also discussed briefly.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.