Abstract
Introducing time-periodicity in one or more system parameters may lead, in general, to a dangerous and well-known parametric resonance. In contrast to such a resonance, a properly tuned time-periodicity is capable of transferring energy between vibration modes. Time-periodicity in combination with system damping is capable of efficiently extracting vibrational energy from the system and of amplifying the existing damping affecting transient vibrations. Operating the system at such a specific time-periodicity, the system is tuned at a parametric anti-resonance. The present contribution outlines the basic physical interpretation of this concept and summarises the experimental validation for different mechatronic systems. Starting with a theoretical performance measure, all experiments related to this concept are compared qualitatively and the two most successful implementations are discussed in more detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.