Abstract

Solid-state solvation (SSS) is analogous to liquid-phase solvation but occurs within glassy matrices. Organic solutes with singlet charge transfer (1CT) excited states are especially susceptible to solvatochromism. Their 1CT states and photon emission energies decrease when surrounding molecules with sterically unhindered polar moieties reorient to stabilize them. Thermally activated delayed fluorescence (TADF) organic light-emitting diodes feature such solutes as emitters in the solid state, employing efficient reverse intersystem crossing to harvest the majority of electrogenerated triplets. Here we explore the potential of SSS to manipulate not only these emitters’ 1CT states but also, concurrently, their singlet–triplet energy gaps (ΔEST) that control TADF. By solvating the TADF emitter 2PXZ-OXD with progressively increasing concentrations of camphoric anhydride (CA) in a polystyrene film, we find that it is possible to finely tune the emitter’s photophysics. We observe a maximum increase in prompt li...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call