Abstract
Tuning the heat flow is fundamentally important for the design of advanced functional materials. Here, polymers are of particular importance because they provide different pathways for the energy transfer. More specifically, the heat flow between two covalently bonded monomers is over 100 times faster than between the two non-bonded monomers interacting via van der Waals (vdW) forces. Therefore, the delicate balance between these two contributions often provide a guiding tool for the tunability in thermal transport coefficient k of the polymeric materials. Traditionally most studies have investigated k in the linear polymeric materials, the recent interests have also been directed towards the highly cross-linked polymers (HCP). In this work, using the generic molecular dynamics simulations we investigate the factors effecting k of HCP. We emphasize on the importance of the cross-linking bond types and its influence on the network microstructure with a goal to provide a guiding principle for the tunability in k. While these simulation results are discussed in the context of the available experimental data, we also make predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.