Abstract

Sodium (Na)- and potassium (K)-doped δ-MnO2, which presented different band gaps, were synthesized by a hydrothermal method. Then, uniform Au nanoparticles (NPs) were deposited on MnO2 to form metal-semiconductor nano-heterojunctions (MnO2-Au). By comparing their temperature-dependent thermal catalytic performances, p-aminothiophenol to p, p'-dimercaptoazobenzene conversion was used as proof-of-concept transformations. MnO2-Au hybrid materials demonstrated better thermal catalytic performances relative to individual Au NPs. Meanwhile, K-doped MnO2-Au, with a MnO2 support displaying a narrower bandgap, displayed superior catalytic activities relative to Na-doped MnO2-Au. To get the same catalytic performance by individual Au NPs, it can be ∼50 K less by Na-doped MnO2-Au and ∼100 K less by K-doped MnO2-Au. The enhancement is mainly attributed to the thermally excited electrons in MnO2, which were transferred to Au NPs. The additional electrons in Au NPs increase the electron density and thus contribute to the improvement of thermal catalysis. Our findings show that the establishment of a nano-heterojunction formed by metal NPs on a semiconductor support has a significant impact on thermal catalysis, where a narrower band gap can facilitate thermally excited carriers and thus bring about better catalytic performances. Thus, the results presented here shed light on the design of a nano-heterojunction catalyst to approach reactions with superior performance under moderate conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.