Abstract
Understanding the binding mechanisms for aromatic molecules on transition-metal surfaces, especially with defects such as vacancies, steps and kinks, is a major challenge in designing functional interfaces for organic devices. One important parameter in the performance of organic/inorganic devices is the barrier of charge carrier injection. In the case of a metallic electrode, tuning the electronic interface potential or the work function for electronic level alignment is crucial. Here, we use density-functional theory (DFT) calculations with van der Waals (vdW) interactions treated with both screened pairwise (vdWsurf) and many-body dispersion (MBD) methods, to systematically study the interactions of benzene with a variety of stepped surfaces. Our calculations confirm the physisorptive character of Ag(2 1 1), Ag(5 3 3), Ag(3 2 2), Ag(7 5 5) and Ag(5 4 4) surfaces upon the adsorption of benzene. The MBD effects reduce the adsorption energies by about 0.15 eV per molecule compared to the results from the DFT + vdWsurf method. In addition, we find that the higher the step density, the larger the reduction of the work function upon the adsorption of benzene. We also study the effect of vdW interactions on the electronic structure using a fully self-consistent implementation of the vdWsurf method in the Kohn–Sham DFT framework. We find that the self-consistent vdWsurf effects increase the work function due to the lowered Fermi level and the increased vacuum level. As a result, the benzene/Ag(2 1 1) system has the lowest work function (3.67 eV) among the five adsorption systems, significantly smaller than the work function of the clean Ag(1 1 1) surface (4.74 eV). Our results provide important insights into the stability and electronic properties of molecules adsorbed on stepped metal surfaces, which could help in designing more appropriate interfaces with low work functions for electron transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.